Very low-density lipoprotein (VLDL) is a triglyceride (TG)-rich lipoprotein which is produced by liver. We previously reported that VLDL clearly showed higher values in the order of type 2 diabetic patients with obesity (27.3 ± 22.7 mg/dL), type 2 diabetic patients without obesity (20.1 ± 16.2 mg/dL), subjects with low Framingham risk score (16.6 ± 12.8 mg/dL), and young lean men (4.0 ± 4.6 mg/dL) by using the anion-exchange high performance liquid chromatography data [1]. Further, we reported that the 2-week treatment using a glucagon-like peptide 1 (GLP-1) analog reduced VLDL from 27.3 ± 22.7 to 17.4 ± 7.8 mg/dL in obese patients with type 2 diabetes (BMI, 29.5 ± 7.0 kg/m²; HbA1c, 9.1±2.1%) [2]. In this study, changes in TG were significantly correlated with changes in VLDL (r = 0.99, P < 0.001). These previous studies strongly suggest that VLDL is the leading actor in lipid abnormality in patients with diabetes and/or obesity.

Insulin resistance which is induced by obesity is the main cause of the metabolic syndrome and type 2 diabetes, and increases activity and expression of hormone-sensitive lipase in adipose tissue, which hydrolyses TG, releasing free fatty acids (FFA) (Fig. 1) [3]. In an insulin resistant state, increased FFA entry to liver, reduced degradation of apoB100 and enhanced expression of microsomal TG transfer protein which is a key enzyme involved in VLDL assembly may elevate hepatic production of VLDL [4, 5]. Insulin resistance also decreases the activity of lipoprotein lipase, the rate-limiting enzyme of the catabolism of TG-rich lipoproteins such as VLDL [6].

Hypertriglyceridemia and hypercholesterolemia which are commonly observed in patients with obesity and/or type 2 diabetes may be mainly induced by an increase of VLDL.

Conflicts of Interest

The author declares that he has no conflicts of interest concerning this article.

References

Figure 1. The abnormal lipid metabolism which may be observed in insulin resistance such as metabolic syndrome and type 2 diabetes.