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Biological Clocks: Nature, Organization and Interactions

Nicolas Wiernspergera, b, d  Jean Robert Rapinb, c

Abstract

Probably few domains of medical research have experienced so 
much interest within such short time frame as the identifi cation 
and functioning of biological clocks. While circadian clocks are 
the best-known, very recent research has shown that biological 
clocks are numerous, closely interacting and, very importantly, that 
some are conserved from primitive organisms. While the central 
coordinator is located in the suprachiasmatic nucleus and mainly 
sensitive to light/darkness, also multiple peripheral clocks exist, 
which are sensitive to food and local metabolism and involved in  
both metabolism and vascular physiology work. The whole system 
works in a remarkably coordinated manner, although peripheral 
clocks can also work independently from the central clock. It can 
be seen how hormonal profi les vary physiologically over a 24h 
period and how disturbances in these processes can deregulate 
the system and the metabolic homeostasis. Many genes have just 
been identifi ed, which largely help to understand functioning of the 
system and how de-synchronization (due in particular to modern 
lifestyle) can easily perturb it. The fact that essentially all factors 
known to be causally involved in the cardiometabolic syndrome 
(insulin resistance, vascular dysfunction) are involved strongly 
supports the key role clocks and their dysfunction may play in 
the present worldwide burden of this pathology. In particular it is 
impressive to note that simply changes in clock synchronization 
can induce these disorders, without necessarily invoking overeating 
and/or sedentarity usually considered as culprits.
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Introduction

The worldwide, ongoing burden of cardiometabolic syn-
drome and diabetes is generally attributed to major changes 
in lifestyle, more particularly wrong alimentary habits (over-
eating) and sedentarity. It is noticeable that the latter are di-
rectly linked to major social and technological modifi cations 
during the last 4 or 5 decades, more particularly increases 
in leisure time and availability of electricity. Thereby whole 
populations progressively changed their daily living habits, 
for example a shift in their sleep/wakefulness rhythms by 
several hours, having dinner at later times and going to bed 
much later than their ancestors.

Is it a hazard that the dysmetabolic burden goes in paral-
lel with these changes in biological rhythms? Certainly not! 
Mal- or non-adaptation of our numerous organ and cell clock 
genes to these new ways of life may therefore be directly 
involved in the development of the metabolic diseases.

At least two major observations support this concept: 
fi rst, the health problems expressed by shift workers both 
in metabolic [1, 2] and cardiovascular aspects [3, 4]. Sec-
ond, sleep disturbances of various nature (duration, shifting, 
interruptions) have recently been demonstrated to be caus-
ally linked to metabolic disorders [5, 6]. These pathological 
changes are found in many other pathologies associated with 
modifi cations in biological rhythms, as will be seen.

Few domains have experienced such an abrupt increase 
in knowledge within so short time as the medical compre-
hension of the consequences of whole organ or cellular 
rhythm dysregulations. It is therefore the aim of this review 
to expose to physicians: a) the nature and pathophysiologi-
cal background of various rhythms and their interactions and 
b) their implication in cardiometabolic diseases and the po-
tential consequences on alimentary habits. The aim of this 
review is not to go into a detailed description of all their 
characteristics but mainly to make physicians aware of the 
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importance of these hitherto unrecognized parameters in 
metabolic disorders. Consequently the reader will regularly 
be referred to recent, excellent reviews dealing with the spe-
cifi c aspects of this very evolving topic.

Metabolic Homeostasis: a “Symphonic Or-
chestra”

Metabolic variations and their physiological regulation 
might be compared to a symphonic orchestra. A symphonic 
piece sounds great provided all groups of instrumentalists 
play exactly at the time they have to play, both within their 
instrument group and between the groups. However the 
groups play different rhythms at different moments. Any 
error in timing leads invariably to dysharmony, the reason 
why all these various rhythms must be controlled in a highly 
coordinated fashion by a “supervisor” which is the orchestra 
conductor. As will be seen this is exactly what occurs when 
we consider biological rhythms in peripheral tissues and 
their control by the central nervous system. Like in music, 
shifts in biological rhythm synchronization result in dyshar-
mony with direct consequences on health.

Multiplicity of biological rhythms

Various biological rhythms can be observed, ranging from 

long-term (seasonal, for example), mid-term (circadian, i.e. 
over 24 h) to very short cycle lengths. However even within 
the circadian period, subdivisions must be made because of 
so-called ultradian rhythms. The latter can be of low (period 
of several minutes) or high frequency (period of 1-10Hz). 
Suffi ce to mention here that in fact most variables involved 
in metabolic homeostasis demonstrate rhythmicity (Table 
1). To work properly, this requires a synchronized control, 
which is located in the hypothalamus, more exactly in the 
suprachiasmatic nucleus (SCN), where even individual neu-
rones function as oscillators [7, 8]. Specifi c clock genes are 
presently under intense investigation, details of which can be 
found in dedicated reviews [7, 9]. The best known genes are 
termed CLOCK, BMal1, PER 1-3 and Cryptochrome 1 and 
2. It is assumed that up to 10% of genes are clock-controlled.

Most organisms function with a circadian timing system 
to cope with and anticipate changes in seasonal and daily 
rhythms. The identifi cation of “clock genes” is little older 
than a decade and helped greatly understanding and discrim-
inating the role of the two main control systems of circa-
dian rhythms: the SCN-dependent and the SCN-independent 
rhythms. While the fi rst is essentially light/darkness-regulat-
ed, the second are “food entrainable” and known as “food 
entrainable oscillators”, which require physiological cues to 
maintain their rhythms [10]. Details about functioning and 
underlying mechanisms can be found in very recent reviews 
[11]. Indeed the fact that the SNC controls the timely ad-

No. Selected parameters

1 GLYCAEMIA
2 GLUCOSE UPTAKE
3 GLUCOSE TOLERANCE
4 INSULINAEMIA
5 CORTISOL
6 CORTISOL-RELATED GENES
7 LEPTIN
8 ADIPONECTIN
9 MELATONIN
10 NOCTURNIN
11 CYTOKINES
12 LIPOPROTEIN LIPASE
13 LIPID SYNTHESIS
14 GASTRIC EMPTYING
15 HEPATIC GLUCONEOGENESIS
16 HDL / LDL
17 PAI-1
18 FIBRINOGEN
19 NITRIC OXIDE
20 PEROXIREDOXINS
21 IMMUNE FACTORS

Table 1. Some Selected Parameters of the Cardiometabolic 
Syndrome With Demonstrated Circadian Variation

                  160



J Endocrinol Metab  •  2011;1(4):159-165   Biological Clocks

Articles © The authors   |   Journal compilation ©  J Endocrinol Metab and Elmer Press™   |   www.jofem.org

equacy of metabolic rhythms does not exclude the existence 
of partly fully autonomic clocks in various peripheral tissues 
such as liver, pancreas or blood vessels [10-13]. Interest-
ingly circadian rhythms seem to be partly highly conserved 
mechanisms since they have been described in primitive 
organisms such as the primitive nematode C. elegans [14]. 
Impressively it was reported very recently that even non-nu-
cleated cells such as erythrocytes exhibit rhythmic variations 
in the antioxidant peroxiredoxins, with direct consequences 
on blood oxygenation [15].

Rhythmic metabolic variations: focus on some main players 
in metabolic homeostasis

Peripheral tissues exhibit rhythmic behaviours which can be 
controlled by central (nervous) or local (metabolic, hormon-
al) factors as well as by intrinsic rhythm-generating pace-
makers. While it appears logical that substances produced by 
the biochemical machinery in the immediate vicinity of cells 
may directly induce metabolic variations, intrinsic rhythmic-
ity (oscillators) is poorly understood. Indeed the latter can 
even be observed for periods of hours or days in pancreatic 
islets [16] or adipocytes kept under ex-vivo conditions [17] 
as well as in cultured skeletal muscle cells [18].

In rodents locomotor activity increases before the time 
of food presentation, the so-called food anticipatory activity. 
This behaviour is considered to be completely independent 
of the SCN [19, 20]. In humans, such an effect is seen in hor-
monal secretion in people having regular meal times: it is the 
“cephalic phase” of insulin secretion, which occurs upon the 
visual and/or olfactive stimulus of food presentation preced-
ing food ingestion. This physiological phenomenon is very 
important for coordinated digestion and partly determines 
postprandial glycemic regulation [21]. The small, early in-
crease in plasma insulin may open the nutritive capillary bed 
in target tissues such as skeletal muscle to store glucose from 
the meal [22]. It has been shown that the cephalic phase is a 
conditioned process [23] and its dysregulation is conceivably 
a possible cause of impaired postprandial glucose tolerance.

Insulin and glucose exhibit oscillating values in plasma 
over the day [24, 25]. Insulin is delivered into the portal vein 
in a pulsatile manner, with pulse intervals of 5-15 minutes 
[24, 26-28], which regulate hepatic hormone extraction and 
thereby its peripheral delivery [29]. A much slower (ultra-
dian) oscillation for insulin has also been discovered [30]. 
Interestingly, insulin rhythms persist even during prolonged 
fasting, i.e. when glucose levels are low [31]. Precise mecha-
nisms regulating insulin oscillations are still under investiga-
tion [32]. The pancreas is equipped with intrinsic pacemak-
ers which are nevertheless under neural central modulation. 
Experiments revealed that lack of clock function in pancreas 
of mutant mice resulted in severe glucose intolerance and 
defective insulin production, strengthening the importance 
of this intrinsic circadian clock for normal glucose homeo-

stasis [14]. In diabetes [33], but also in diabetic relatives 
[34], pulsatile insulin secretion is impaired. A main fi nding 
is that glucose tolerance, mainly due to variations in insulin 
sensitivity, also varies during the 24h in normal individuals, 
showing reduction in the evening and early night [35], while 
this is not observed in obese [36] and in diabetic patients 
[13]. Thus, although the circadian variations are small, they 
appear to be physiologically important and are worth larger 
investigations.

The liver plays a most prominent role in glycemic reg-
ulation: it is shown that deletion of BMal1 in mice leads 
to various defaults in glucose homeostasis [37]. In fact 
both glucose tolerance and insulin sensitivity exhibit daily 
rhythms [38]. Disruption of clock genes in the liver and skel-
etal muscle of mice leads to impaired glucose tolerance and 
some contradictory effects on insulin sensitivity [39]. Oth-
ers have reported obesity, hyperleptinemia, hyperglycemia 
and hepatic steatosis in this model [40]. In humans polymor-
phisms of the Clock gene are associated with obesity and 
metabolic syndrome [41]. Hyperglycemia has also been as-
sociated with variants of the circadian gene Per2 [42].

Fat cells are recognized as playing a cardinal role in the 
metabolic syndrome. Disruption in sleep patterns are associ-
ated with increased body fat [43] and it suggested that mo-
lecular clocks at the level of adipocytes are disturbed in such 
situations [44]. Conversely obesity alters circadian clock 
gene expression [45].

These data suggest that rhythmicity and metabolic dis-
orders are linked in a bidirectional fashion [46]. The same 
phenomenon is known to occur among sleep disorders and 
cardiometabolic parameters [47, 48]. Here too it was shown 
that a shift in sleep (day sleep) increased IGFBP1 and ele-
vated cortisol as compared with normal nocturnal sleep [49]. 
This important aspect was recently reviewed [50].

Rhythmic cardiovascular variations

Rhythmic variability is well-known in cardiovascular physi-
ology [51]; it represents an interesting aspect if we recall the 
close link between metabolic disorders and cardiovascular 
events, leading to the cardiometabolic syndrome. One of the 
best known characteristic of pathological chronobiology in 
current medicine is the preferential occurrence of heart in-
farction in morning hours. The observation that most car-
diovascular physiological parameters (blood pressure, heart 
rate) exhibit circadian behaviour has led to the recent notion 
of chronocardiology [52]. Vascular diameter and vessel re-
activity show diurnal variation [53]. Tissue oxygen tension, 
refl ecting microvascular blood perfusion, shows a typical os-
cillatory behaviour in the brain [54]. Platelet aggregation and 
PAI-1 levels, both key factors in hemostasis, peak at awaken-
ing times [55, 56]. Such aspects (should) have a direct im-
pact on therapeutic protocols (chronotherapy) [57-59].

Nutrient delivery is fi nely regulated by the microvascular 
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fl ow changes, allowing to constantly and precisely adapt 
perfusion to local needs or, in case of glucose homeostasis, 
to store glucose in skeletal muscles during postprandial 
periods. This regulation involves a phenomenon known 
as precapillary vasomotion, an observable alternance of 
diameter changes in small terminal arterioles, which open or 
close individual capillary units [60].

Some examples of biological rhythm disorders in cardio-
metabolic regulation

One of the most prominent aspects of biological rhythms 
is evidently the day/night cycle. As stated before, a large 
amount of evidence for its importance comes from obser-
vations in shift workers and subjects suffering sleep disor-
ders. The past years have increasingly demonstrated how 
sleep disorders are bidirectionaly   linked to the metabolic 
syndrome and to vascular derangements [6, 22, 61]. In this 
context, melatonin seems a good candidate to illustrate how 
modifi cations in life style can impact our health. Although 
melatonin is best known as the “sleeping hormone”, only 
recent discoveries showed its crucial importance in both 
metabolic and cardiovascular physiology. Melatonin is in-
volved in the synchronization of various organs involved in 
glycemic regulation and insulin secretion [62]. Absence of 
melatonin leads to night-time hepatic insulin resistance and 
increased gluconeogenesis [63]. The night/day differences 
observed in normal physiology are lost in metabolic syn-
drome patients and are negatively linked to fasting plasma 
glucose [64]. Melatonin receptors are expressed in pancre-
atic islets [65] and absence of melatonin-1 receptors in mice 
results in insulin resistance [66]. Circadian insulin secretion 
is related to melatonin variations and it is shown that poly-
morphisms of the melatonin-2 receptor in humans are linked 
to elevated risks for type 2 diabetes [67]. Conversely melato-
nin (or agonist) administration prevents diet-induced obesity 
in rats [68, 69].Very interestingly, melatonin is also involved 
in cardiovascular functions [70] and melatonin receptors are 
found in cardiomyocytes [71]. Here again, melatonin treat-
ment of obese rats improves cardiac postischemic injury 
[68]. Therefore melatonin appears as an attractive target for 
preventing or improving diabetes.

Although information in the vascular fi eld is still limit-
ed, it was shown that mice bearing mutations in clock genes 
such as Bmal-1, Clock or Per2 exhibited defective vascular 
remodelling and endothelial dysfunction in larger vessels 
[71, 72]. In humans hypertension in metabolic syndrome is 
associated with variants of the Npas2 gene [42].

In the microcirculation, vasomotion can be measured 
with a periodicity of 1-10Hz under basal conditions but can 
be activated by physiological changes such as postprandial 
substrate delivery, when insulin promotes glucose uptake and 
storage in skeletal muscle [73]. Synchronization between 
communicating cells in the arteriolar wall is the prerequisite 

for this regulatory mechanism to function. Mechanisms to 
explain it are still under exploration [60]. We and others have 
suggested, and partly demonstrated, that defective arteriolar 
vasomotion (=absence of synchronization in oscillator 
activity) is linked to insulin resistance and defective glucose 
uptake [22, 73]. Finally the circadian clock also regulates 
triglyceride metabolism within cardiomyocytes, as shown 
by metabolic defects in hearts of clock-mutant mice [74]. 
In humans, visceral fat accumulation, characterizing the 
metabolic syndrome, was recently reported to correlate with 
defects in circadian blood pressure [75]. These yet limited 
data nevertheless strongly support an implication of rhythmic 
disorders in vascular physiology. Interested readers will fi nd 
more information in excellent recent reviews [8, 75].

As seen, modifi cations in clock genes and living behav-
iour lead to changes characteristic of metabolic syndrome: 
insulin resistance, obesity, dyslipidemia, cardiovascular dis-
turbances.

Conclusion

Similarly to a symphony orchestra, where small groups cope 
with their individual rhythm but in a globally coordinated 
fashion, mechanisms regulating metabolic homeostasis re-
quire that the whole operates in phase and be controlled for a 
synchronous and harmonious functioning. Failure to work in 
a fi nely synchronized manner, at very precise timings, leads 
to pathological modifi cations in metabolic homeostasis [46, 
76-80].

Misalignment of daily-life behaviour and stable circadi-
an oscillators leads to adverse cardiometabolic effects [81]. 
While these data suggest that troubles in circadian rhythms 
are largely acquired because of inadequate life-style, it can 
also be inherited: adult metabolic diseases are known to 
originate for a great part from so-called fetal programming; 
in mice it was shown that protein malnutrition during preg-
nancy resulted in altered circadian rhythms before obesity 
developed [82].

It is fascinating to see that a metabolic syndrome might 
be partially or fully induced just by changing some of our 
cellular rhythms without invoking alimentary misbehaviours 
or lack of exercise. Considering what has been discovered 
during the recent 5 years, such completely new approaches 
may well explain a good part of the burden of metabolic dis-
eases encountered worldwide. Clearly all main players of the 
metabolic syndrome (insulin secretion/sensitivity, glycemia, 
lipid metabolism, hepatic regulation of glycemia, cortisol, 
adipokines) display cyclic variations during or overt the day. 
The same seems to hold true for factors responsible fort he 
cardiovascular disturbances typically linked to the metabolic 
disorders (Table 1).

It will also be interesting to learn from these observa-
tions, to identify possible errors in our eating habits accord-
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ing to daily lifestyle changes and to imagine how we might 
correct these to take into account the limited fl exibility of our 
clock genes.
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