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Abstract

Diabetes mellitus is a metabolic disease characterized by chronic hy-
perglycemia, which leads to irreversible damage to the vascular en-
dothelium and causes many complications. Type 2 diabetes accounts 
for the vast majority of cases and is characterized by a deficit of in-
sulin action on tissues. In recent years, several new oral drugs have 
emerged to treat the disease, including sodium-glucose cotransporter 
2 (SGLT2) inhibitors (flozins) that prevent glucose reabsorption in 
the kidneys. In this review, we analyzed seven different SGLT2 in-
hibitors, including several novel ones, based on 38 selected papers. 
Flozins display high efficacy in reducing hemoglobin A1c (HbA1c), 
body weight, and systolic blood pressure. Therefore, flozins should 
be considered one of first-line treatment options in type 2 diabetes 
not only for patients with heart failure or kidney disease, but also for 
overweight and hypertensive patients.
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Introduction

Diabetes is a group of metabolic diseases characterized by hy-
perglycemia resulting from a defect in insulin secretion or its 
action on tissues. The vast majority of individuals with diabe-
tes have type 2 diabetes mellitus (T2DM), which is related to 
insulin resistance. The development of T2DM is largely in-
fluenced by modifiable environmental factors. These include 
inappropriate caloric balance leading to overweight or obesity, 
excessive intake of monosaccharides, and lack of physical ac-
tivity. In recent decades, there has been a significant increase 

in the incidence of T2DM [1-3]. At the same time, new groups 
of drugs are emerging that not only control glycemic levels but 
also other risk factors, such as body weight.

Flozins, or sodium-glucose cotransporter 2 (SGLT2) in-
hibitors, are a relatively new and promising group of oral an-
tidiabetic agents. They have been recognized in diabetology 
for their antihyperglycemic effect and have also been used in 
cardiology and nephrology to treat heart failure and chronic 
kidney disease [4-8]. In our review, we will focus on present-
ing the long-used flozins, as well as some promising new drugs 
in this group, and compare their effectiveness in the manage-
ment of diabetes.

Among the drugs discussed in this article: canagliflozin, 
empagliflozin, and dapagliflozin have been approved by the 
Food and Drug Administration (FDA) and the European Medi-
cines Agency (EMA) for the treatment of T2DM. Bexagliflo-
zin was approved by the FDA in 2020 and is currently under 
registration process in Europe. However, enavogliflozin, jana-
gliflozin and remogliflozin have recently been registered in 
China, Korea and India, respectively, but have not yet received 
approval from the FDA or EMA.

Mechanisms of action of SGLT2 inhibitors

SGLT2 cotransporters belong to a large family of symporters 
responsible for facilitated transport of different solutes, aided 
by a positive sodium gradient [9, 10]. Two cotransporters can 
be distinguished in this group: SGLT1 and SGLT2. SGLT2 is 
responsible for the reabsorption of glucose from the proximal 
tubule of the nephron and is found almost exclusively in renal 
tissue. SGLT2 is capable of removing up to 97% of glucose 
from the primary urine [11-13]. The SGLT1 cotransporter, 
located further down the proximal tubule, reabsorbs any re-
maining glucose. Therefore, in healthy individuals all glucose 
is reabsorbed from the filtered primary urine because glucose 
excretion by the kidneys results in a loss of valuable calories 
for the body.

SGLT2 has a high capacity but low affinity for glucose, 
while SGLT1 has low capacity and high affinity.

The level of reabsorption is directly proportional to the 
concentration of glucose in the primary urine, but it is not un-
limited. The maximum capacity of SGLT2 is reached at a glu-
cose filtration rate of approximately 350 mg/min/1.73 m2 [14, 
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15]. This is achieved at a glycemia of approximately 180 mg/
dL. Above this threshold, the amount of filtered glucose ex-
ceeds the capacity of SGLT2, leading to glucosuria. To prevent 
chronic hyperglycemia from causing this process, the expres-
sion of SGLT2 cotransporter in the proximal tubule increases. 
The overexpression of SGLT2 is accompanied by an increase 
in the expression of the sodium-hydrogen exchanger 3 (NHE3) 
transporter, which is responsible for reabsorption of two-thirds 
of sodium filtered by the kidney [16-18]. It should be noted 
that SGLT2 itself not only transports glucose but also sodium 
at a 1:1 ratio.

Excessive reabsorption of sodium in the proximal tubule 
leads to a significant reduction in its concentration further down 
the loop of Henle and the distal tubule, which is misinterpreted 
by the macula densa as hypovolemia [19]. As a result, the secre-
tion of adenosine by the macula densa is decreased. Adenosine 
typically induces vasodilation through A2 receptors, including 
those in efferent arterioles, but in afferent arterioles it causes 
vasoconstriction through A1 receptors [20]. Consequently, the 
decreased adenosine concentration causes afferent arteriole di-
lation and efferent arteriole constriction, both of which generate 
a high intraglomerular pressure. This leads to glomerular dam-

age. Additionally, the juxtaglomerular cells activate the renin-
angiotensin-aldosterone system (RAAS), contributing to hyper-
volemia and hypertension [21, 22].

Moreover, heightened filtration and reabsorption increases 
ATP and oxygen consumption. This can lead to local hypoxia, 
which results in the release of proinflammatory cytokines that 
can induce fibrosis and loss of glomerular function [23-25]. 
This chain of events can be prevented by SGLT2 inhibitors, 
thereby demonstrating their nephroprotective effect in diabetes 
(Fig. 1).

Theoretically, inhibiting SGLT2 should significantly re-
duce renal reabsorption capacity, causing glucosuria of more 
than 90% of daily glucose filtration. The level of glucosu-
ria is directly proportional to the dose of flozin, but even at 
the maximum dose, the level of glucose excretion reaches at 
most about 50%. The paradox arises because inhibition of the 
SGLT2 cotransporter leads to the SGLT1 cotransporter tak-
ing over its role. Physiologically, the SGLT1 cotransporter 
is responsible for reabsorbing only several grams of glucose 
flowing through the proximal tubule, but its daily capacity can 
reach 120 - 140 g of glucose. This lowers the renal threshold to 
about 140 mg/dL [15, 26].

Figure 1. Renal glucose reabsorption in the proximal tubule. SGLT2 cotransporter, located in the apical membrane of the early 
proximal tubule, absorbs up to 97% of glucose. The glucose is then transported back into the blood with the help of the GLUT2 
transporter. The remaining glucose is absorbed by the SGLT1 cotransporter, located in the apical membrane of the late proxi-
mal tubule, and then enters the blood with the help of GLUT2/1 transporters. Therefore, under physiological conditions, almost 
100% of glucose from the primary urine is reabsorbed. SGLT1/2: sodium-glucose cotransporter1/2; NHE3: sodium-hydrogen 
exchanger 3; GLUT1/2: glucose transporter1/2.
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T-1095 was the first oral inhibitor of the SGLT2 cotrans-
porter. However, due to its lack of selectivity, it also inhibited 
the SGLT1 cotransporter, resulting in gastrointestinal side ef-
fects [27-30]. At present, numerous selective new drugs in this 
category have been developed, with many more currently in 
the trial phase. Their application is not restricted to diabetes 
alone. Clinical trials of dapagliflozin [31-34] and empagliflo-
zin [35-37] have shown significant benefits in patients at high 
cardiovascular risk. These include the treatment of heart fail-
ure, slowing down the progression of albuminuria in diabetic 

and non-diabetic kidney disease, and slowing down the overall 
progression of chronic kidney disease [38, 39] (Fig. 2).

Endothelial dysfunction plays a pivotal role in the patho-
genesis of atherosclerosis and is frequently accompanied by 
elevated oxidative stress and inflammatory response [40]. Cor-
rection of hyperglycemia by SGLT2 inhibitors, which results 
in increased urinary glucose excretion, leads to a reduction 
in glucotoxicity by decreasing advanced glycation end prod-
ucts (AGE) formation. This alleviates the oxidative stress and 
inflammatory response [41]. An in vitro study showed that 

Figure 2. General mechanism of action of SGLT2 inhibitors. The green color marks benefits associated with the use of SGLT2 
inhibitors, while white indicates the effects that can lead to benefits and/or adverse effects depending on the clinical situation, 
red shows potential adverse effects associated with the use of SGLT2 inhibitors. SGLT2 inhibition increases glucose and sodium 
excretion. Enhanced sodium excretion and decreased renal hyperfiltration delay the progression of chronic kidney disease. 
Increased glucose excretion leads to osmotic diuresis, which increases the risk of urinary tract infection, and sepsis. Increased 
diuresis reduces cardiac preload, thereby reducing the risk of cardiovascular events and mortality. In addition, there is a decrease 
in blood glucose levels, which reduces the need for insulin and glucotoxicity on the vascular endothelium, improving function of 
pancreatic beta cells. Glucose excretion leads to energy loss and weight loss, which lowers blood pressure and increases insulin 
sensitivity. It is important to note that while SGLT2 inhibitors do not cause hypoglycemia in monotherapy, they may increase the 
risk of occurrence of hypoglycemia when used in combination with other drugs that have hypoglycemic effect (e.g., insulin, sulfo-
nylurea derivatives). SGLT2: sodium-glucose cotransporter 2; UTI: urinary tract infection; CV: cardiovascular; AKI: acute kidney 
injury; TG: triglycerides; HDL: high-density lipoprotein.
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SGLT2 inhibitors provide protection against high glucose-in-
duced mitochondrial dysfunction. In particular, empagliflozin 
was observed to restore nitrite levels in cultured human umbil-
ical vein endothelial cells during hyperglycemia. Furthermore, 
SGLT2 inhibitors, as well as antioxidant gene induction with 
sulforaphane, prevented high-glucose-induced endothelial 
dysfunction in mouse aortic tissue maintained in hyperglyce-
mic medium [42].

Heart failure pathophysiology in T2DM arises through 
multiple mechanisms which affect cardiac contractility, relaxa-
tion and compliance. Diabetes accelerates the development of 
coronary artery disease, which may lead to myocardial infarc-
tion and structural changes [43]. Hyperactivation of the renin-
angiotensin-aldosterone system (RAAS), as described above, 
contributes to hypertension, myocardial hypertrophy, inflam-
mation, increased cardiac preload and afterload, and fibrosis. 
These factors inevitably lead to a decline in diastolic function 
[44]. Chronic hyperglycemia plays a key role in the develop-
ment of heart failure in T2DM [45]. It results in the formation 
of non-enzymatic AGE, which negatively affect contractil-
ity and relaxation [46]. In physiological conditions, a healthy 
heart requires a significant amount of energy from a variety of 
substrates, including glucose and free fatty acids [47]. In hy-
perglycemic conditions, the ability of the myocardium to ob-
tain energy from glucose is compromised, leading to a switch 
to fatty acid metabolism. This is less efficient, especially in 
the presence of increased oxygen demand, and is associated 
with elevated reactive oxygen species formation. Addition-
ally, fatty acid metabolism affects calcium absorption, which 
in turn impairs diastolic function [48]. Ketone bodies may be 
a good alternative as a substrate for energy production. They 
have been observed to improve the metabolic efficiency of the 
heart, preventing the formation of reactive oxygen species and 
reversing ventricular remodeling [49]. Additionally, ketones 
exhibit anti-inflammatory properties by suppressing inflam-
masome subunit NLRP3 [50]. This suggests another potential 
therapeutic mechanism for SGLT2 inhibitors in the treatment 
and prevention of heart failure, which has been shown to in-
duce euglycemic ketoacidosis.

Adverse effects of SGLT2 inhibitors

Despite the tremendous benefits of SGLT2 inhibitors, these 
drugs are not without side effects. The direct effects of SGLT2 
inhibitors are osmotic diuresis and plasma volume reduction, 
which are the main causes of adverse effects. These especially 
affect patients predisposed to genital or urinary tract infections, 
in most cases mild to moderate [51-55]. A very rare, but poten-
tially fatal adverse effect is Fournier’s gangrene [56]. Eugly-
cemic ketoacidosis has been observed in some cases [57-60]; 
however, this observation was not reported in the CREDENCE 
and DAPA-CKD trials.

Methods and Materials

The PubMed database was used for the analysis, and the cri-

teria used depended on the number of publications available 
for a given flozin, resulting in a total of 395 publications that 
were further reviewed. For enavogliflozin and janagliflozin, 
the only primary criterion was the presence of the flozin name 
in the title. This resulted in nine and eight results, respec-
tively. The publications were verified by rejecting off-topic 
papers, those lacking sufficient data for analysis, and stud-
ies conducted on non-human models. Finally, five papers on 
enavogliflozin and three on janagliflozin were included in this 
publication.

We applied the same criteria to papers published within 
the last 5 years to select relevant research on remogliflozin. In-
itially, 36 results were obtained, but after further verification, 
only three papers were used for analysis. For bexagliflozin, the 
criteria were expanded to include publications from the last 5 
years and those with “diabetes” in the title. This resulted in 15 
potential publications, eight out of which were eventually used 
in the analysis.

For canagliflozin, empagliflozin, and dapagliflozin, the 
primary criteria were expanded to include papers from the last 
5 years that contain “diabetes” in the title and “HbA1c” in any 
field. This resulted in 47, 115, and 165 results, respectively. 
For canagliflozin, we further expanded the criteria to include 
“body weight” in any field, resulting in 19 papers. After analy-
sis, we were able to include seven of these papers. In the case 
of empagliflozin and dapagliflozin, the criteria were expanded 
to include “body weight” and “systolic” content in all fields, 
resulting in 17 and 22 papers, respectively. After subsequent 
analysis, six papers were used in both cases. In the end, 38 
papers were used to analyze the reduction of hemoglobin A1c 
(HbA1c), body weight and/or systolic blood pressure by each 
flozin (Fig. 3).

Results

Enavogliflozin

Enavogliflozin is a selective SGLT2 inhibitor. It is currently 
in clinical trials in Korea. It has more than 667-fold greater 
affinity for SGLT2 than for SGLT1 and a linear dose-effect re-
lationship with both oral and intravenous administration [61]. 
To date, a few studies have been conducted to evaluate the 
safety and efficacy of enavogliflozin in the treatment of diabe-
tes with good results. Enavogliflozin, like other drugs in this 
class, reduces HbA1c, body weight and blood pressure in pa-
tients (Table 1) [62-66]. Studies comparing HbA1c reductions 
induced by enavogliflozin and dapagliflozin showed a slight 
advantage of the former. This makes enavogliflozin likely to 
be another promising new drug in this group for a wider group 
of patients [62-66].

Janagliflozin

Janagliflozin is an oral selective SGLT2 inhibitor, chemically 
developed and patented in China [67], which has demon-
strated good efficacy and safety [68-72], including in patients 
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with coexisting cirrhosis and chronic kidney disease [73, 74]. 
Three studies have been conducted to determine the efficacy 
of janagliflozin in reducing HbA1c. The results showed con-

centration decrease after 24 weeks of therapy: -0.58% for the 
25 mg and 50 mg dose [70], -0.8% (95% confidence interval 
(CI): -0.98% to -0.62%) for the 25 mg dose, and -0.88% (95% 

Table 1.  Effectiveness of Enavogliflozin in Reducing HbA1c, Body Weight, and Systolic Blood Pressure

Publication HbA1c 
change 95% CI BW change 

(kg) 95% CI SBP change 
(mm Hg)

95% 
CI

No. of 
subjects Notes

Dutta et al, 2023 [62] -0.76% -0.93 to -0.60 -1.37 -1.73 to -1.00 -4.99 -7.83 to 
-2.16

684 Compared to 
dapagliflozin, 
patients receiving 
enavogliflozin 
had significantly 
lower HbA1c 
MD -0.06% (95% 
CI: 0.07 - 0.05); 
P < 0.00001

Han et al, 2023 [63] -0.80% N/D -3.77 N/D -5.93 N/D 200 -
Kim et al, 2023 [64] -0.92% N/D -3.2 N/D -4.5 N/D 270 -
Kwak et al, 2023 [65] -0.99% -1.24% to -0.74% -2.5 -3.3 to -1.6 kg -7.3 N/D 167 -
Yang et al, 2023 [66] -0.79%a N/D -2.03a N/D -2.4a N/D 194 0.1 mga

-0.89%b -1.90b -3.3b 0.3 mgb

-0.92%c -2.84c -6.5c 0.5 mgc

In all cases, enavogliflozin showed greater efficacy than placebo, similar to or greater than dapagliflozin. a, b, cChanges in parameters respectively 
for 0.1 mg, 0.3 mg and 0.5 mg dose. CI: confidence interval; BW: body weight; SBP: systolic blood pressure; N/D: no data; MD: mean difference; 

Figure 3. Out of the 395 initially obtained results, 38 were eventually included in this review. The selection process involved scal-
ing up with additional criteria based on the available pool of results for a given flozin, as well as a content analysis that rejected 
papers which were off topic, did not contain sufficient data, or involved non-human models. N: number of papers.
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CI: -1.06% to -0.7%) for the 50 mg dose [71], and -0.78% 
for the 25 mg dose and -0.93% for the 50 mg dose [72], re-
spectively. Statistically significant reductions were observed 
in fasting plasma glucose, body weight, and systolic blood 
pressure in all of these studies. Additionally, increases in 
high-density lipoprotein (HDL) and insulin sensitivity were 
observed compared to placebo. The trends in improvement of 
these variables were sustained during the 28-week extension 
period.

Bexagliflozin

Bexagliflozin is a novel and highly potent SGLT2 inhibitor 
with more than 2,435-fold selectivity for SGLT2 over SGLT1 
[75]. The FDA granted the first approval of bexagliflozin on 
January 20, 2023, for usage as an adjunctive treatment along-
side lifestyle changes and exercise in T2DM. Studies have 
shown that bexagliflozin can be used effectively (Table 2) 
[76-83] and safely, including patients with stage 3a and 3b 

chronic kidney disease [76].

Remogliflozin

Remogliflozin is a SGLT2 inhibitor that was introduced in In-
dia in 2019 as a antidiabetic agent [84]. Additionally, it has 
been found to be useful in treating non-alcoholic steatohepa-
titis (NASH). A meta-analysis (Dutta et al [85]) of 535 sub-
jects from three randomized clinical trials demonstrated that 
remogliflozin is as effective as pioglitazone and dapagliflozin 
(Table 3) [85-87], with similar rates of adverse effects. In con-
trast, the use of remogliflozin was associated with a greater re-
duction in weight, with a mean difference of -2.79kg (95% CI: 
-2.51 to -3.07 kg). Two studies were conducted to investigate 
the safety and tolerability of remogliflozin at doses of 500 mg 
and 750 mg twice a day (bis in die (BID)), which is higher than 
the typical dose of 100 mg BID. Both studies also included 
metformin at a daily dose of 2,000 mg. The results confirmed 
the safety and efficacy of this regimen [88, 89].

Table 2.  Effectiveness of Bexagliflozin in Reducing HbA1c, Body Weight, and Systolic Blood Pressure

Publication HbA1c 
change 95% CI or SE BW change 

(kg)
95% CI 
or SE

SBP change 
(mm Hg)

95% CI 
or SE

No. of 
subjects Notes

Allegretti et 
al, 2019 [76]

-0.37% -0.20% to -0.54% -1.61 N/D -3.8 N/D 312 Subjects with CKD 
3a, HbA1c reduction: 
-0.31%; CKD 3b: -0.43%

Halvorsen et 
al, 2019 [77]

-0.79% -0.53% to -1.06% N/D N/D N/D N/D 288

Halvorsen et 
al, 2019 [78]

-0.74% -0.62% to -0.86% -3.35 -2.84 to 
-3.85 kg

-4.23 -2.28 to 
-6.18 
mm Hg

370 The reduction in HbA1c 
in the bexagliflozin 
group was slightly 
lower than that in the 
sitagliptin-treated group.

Halvorsen et 
al, 2020 [79]

-0.55%a -0.34% to -0.76%a N/D N/D N/D N/D 292 5 mga

-0.68%b -0.47% to -0.89%b 10 mgb

-0.80%c -0.59% to -1.01%c 20 mgc

Dholariya et 
al, 2023 [80]

-0.45% -0.34% to -0.55% -1.77 -1.10 to 
-2.44 kg

-4.11 -2.03 to 
-6.18 
mm Hg

N/D Meta-analysis; 
20 mg dose

Halvorsen et 
al, 2023 [81]

-1.09% -0.94% to -1.24% -2.51 -1.57 to 
-3.45 kg

-7.07 -4.32 to 
-9.83 
mm Hg

317 20 mg dose

Halvorsen et 
al, 2023 [82]

-0.55 
mmol/mol

-1.20 to -2.30 
mmol/mol

-4.31 -3.52 to 
-5.10 kg

-6.53 -2.51 to 
-10.56 
mm Hg

426 Dose 20 mg, establishing 
noninferiority of 
bexagliflozin to 
glimepiride

Pasqualotto et 
al, 2023 [83]

-0.53% -0.31% to -0.75% -1.61 -0.57 to 
-2.32 kg

-4.66 -2.92 to 
-6.41 
mm Hg

3,111

Studies with sitagliptin and glimepiride have shown similar effectiveness of bexagliflozin in reducing HbA1c. a, b, cChanges in parameters respec-
tively for 5 mg, 10 mg, and 20 mg dose. CI: confidence interval; SE: standard error; BW: body weight; SBP: systolic blood pressure; CKD: chronic 
kidney disease; N/D: no data; HbA1c red: glycated hemoglobin reduction; CKD 3a: chronic kidney disease stage 3a; CKD 3b: chronic kidney 
disease stage 3b.
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However, another study suggested a potential link be-
tween remogliflozin therapy and cases of acute kidney injury 
[90].

Canagliflozin

Canagliflozin is the first approved SGLT2 inhibitor in the USA 
[91, 92]. It is indicated for the treatment of T2DM in combina-
tion with exercise and diet. It is known to reduce the risk of 
major cardiac events, end-stage renal disease and hospitaliza-
tion for heart failure in patients with T2DM and chronic kid-
ney disease. The CREDENCE trial aimed to assess the impact 
of canagliflozin on renal outcomes, including nephropathy 
in T2DM. The primary outcome was to evaluate the risk of 
end-stage renal disease, doubling of serum creatinine, or death 
from renal or cardiovascular causes. The group treated with 
100 mg canagliflozin daily showed a significant risk reduc-
tion compared to the placebo group (hazard ratio (HR): 0.70; 
95% CI: 0.59 to 0.82; P < 0.00001). The study also found a 
32% risk reduction of end-stage renal disease (HR: 0.68; 95% 
CI: 0.54 to 0.86; P = 0.002). Similar observations were made 
for the risk of death from cardiovascular causes, myocardial 
infarction or stroke (HR: 0.80; 95% CI: 0.67 to 0.95; P = 0.01) 
and hospitalization for heart failure (HR: 0.61; 95% CI: 0.47 
to 0.80; P < 0.001) [93].

The CANVAS trial also demonstrated favorable results for 
canagliflozin, with a reduction in the combined risk of car-
diovascular death, nonfatal myocardial infarction, or nonfatal 
stroke by 14% (HR: 0.86; 95% CI: 0.75 to 0.97; P < 0.001 for 
noninferiority; P = 0.02 for superiority) in the canagliflozin 
group compared to the placebo group. Furthermore, canagli-
flozin caused HbA1c change by -0.58% (95% CI: -0.61% to 
-0.56%), body weight by -1.60 kg (95% CI: -1.70 kg to -1.51 
kg) and systolic blood pressure by -3.93 mm Hg (95% CI: 

-4.30 to -3.56 mm Hg) [94].
The following table summarizes the reductions in HbA1c, 

weight, and/or systolic blood pressure obtained in other cana-
gliflozin trials (Table 4) [93, 95-100].

Empagliflozin

Empagliflozin is an oral SGLT2 inhibitor that gained approval 
in the USA in 2014. It has the highest selectivity to SGLT2 
among flozins, more than 2,500-fold over SGLT1 [101]. Nu-
merous studies have demonstrated the high efficacy of empa-
gliflozin in reducing HbA1c, body weight, and systolic blood 
pressure (Table 5) [102-107]. Like canagliflozin, empagliflo-
zin is also used to treat heart failure, in addition to treating 
T2DM.

The EMPA-REG OUTCOME trial confirmed the effi-
cacy of empagliflozin in treating heart failure. The primary 
outcome of the study was to evaluate the composite risk of 
cardiovascular death, nonfatal myocardial infarction, and 
nonfatal stroke in a group of patients treated with empagli-
flozin at doses of 10 mg or 25 mg compared with placebo; a 
14% risk reduction was observed in the empagliflozin-treated 
groups (HR: 0.86; 95% CI: 0.74 to 0.99; P = 0.04 for superi-
ority) [108].

Dapagliflozin

Dapagliflozin was approved by the EMA in 2012, making it the 
first SGLT2 inhibitor to receive regulatory approval anywhere. 
Its primary indication is the treatment of T2DM alongside with 
diet and exercise. Dapagliflozin was proven to reduce the risk 
of hospitalization for heart failure and chronic kidney disease 
[33, 109, 110].

Table 3.  The Effectiveness of Remogliflozin in Reducing HbA1c, Body Weight, and/or Systolic Blood Pressure

Publication HbA1c 
change

95% CI 
or SE

BW change 
(kg)

95% CI 
or SE

SBP change 
(mm Hg)

95% CI 
or SE

No. of 
subjects Notes

Dharmalingam 
et al, 2020 [86]

-0.72%a ± 0.09a, b -2.94a -0.22a, b -2.6a, b N/D 612 Results after 24 weeks, non-inferiority 
found between remogliflozin and 
dapagliflozin group. Dose 100 mg 
BIDa, 250 mg BIDb, change from  
baseline

-0.77%b -3.17b

Dutta et al, 
2021 [85]

-0.13% -0.35% 
to 
0.09%

-2.79 -3.07 to 
-2.51 kg

N/D N/D 535 Mean difference between 
remogliflozin and dapagliflozin and  
pioglitazone groups

Khaladkar et 
al, 2022 [87]

-0.08% -0.28% 
to 
0.13%

N/D N/D N/D N/D 400 Mean difference between vildagliptin 
+ remogliflozin (50 mg + 100 mg 
BID) vs. empagliflozin + linagliptin  
(25 mg + 5 mg)

Changes from baseline were presented in the first publication. In the second publication, the mean difference between the remogliflozin group and 
the dapagliflozin or pioglitazone groups was reported. The third publication presents the mean difference between the vildagliptin + remogliflozin 
group and the empagliflozin + linagliptin group. a, bChanges in parameters respectively for 100 mg BID and 250 mg BID dose. CI: confidence interval; 
SE: standard error; BW: body weight; SBP: systolic blood pressure; BID: bis in die (twice a day); N/D: no data.
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Table 4.  Effectiveness of Canagliflozin in Reducing HbA1c, Body Weight and/or Systolic Blood Pressure

Publication HbA1c 
change

95% CI 
or SE

BW change 
(kg)

95% CI 
or SE

SBP change 
(mm Hg)

95% CI 
or SE

No. of 
subjects Notes

Bhosle et al, 
2019 [95]

-1.90% N/D -3.01 N/D N/D N/D 118 Canagliflozin 100 mg added 
to triple drug regimen

Cusi et al, 
2019 [96]

-0.71% -1.08% to 
-0.33%

-3.4% -5.4% to 
-1.4%

N/D N/D 56 300 mg vs. placebo

Perkovic et 
al, 2019 [93]

-0.31% -0.26% to 
-0.37%

-0.80 -0.69 to 
-0.92 kg

-3.30 -2.73 to 
-3.87 
mm Hg

4,401 100 mg vs. placebo after 
13 weeks of treatment

Woo et al, 
2019 [97]

-0.90%a -1.02% to 
-0.78%a

-3.24 N/D N/D N/D 527 Canagliflozin vs. placebo, after 
6 monthsa and 12 monthsb

-1.04%b -1.15% to 
-0.92%b

Ali et al, 
2020 [98]

-1.67%c 0.29c -6.0c 0.8c -5.2c 2.2a 45 Canagliflozin plus liraglutide 
vs. each alone after 16 
weeks from baseline.

-0.89%d 0.24d -3.5d 0.5d -5.1d 3.8b CANA 100 mg + LIRA 1.2 mgc

-1.44%e 0.39e -1.9e 0.8e -14.1e 3.0c CANA 100 mgd

LIRA 1.2 mge

Kadowaki et 
al, 2022 [99]

-0.43% 0.93% -1.29 5.57kg N/D N/D 821 Teneligliptin/canagliflozin 
combination tablets, 
evaluated after 12 months

Gorgojo-
Martinez et al, 
2023 [100]

-0.33% -0.57% to 
-0.10%

-1.8 N/D -5.3 -8.6 to 
-1.9 mm 
Hg

317 6 months after change from 
CANA 100 mg to 300 mg

Canagliflozin was found to significantly reduce HbA1c in all presented studies. a, bChanges in parameters in canagliflozin vs. placebo group respec-
tively after 6 months and 12 months. c, d, eChanges in parameters respectively for CANA 100 mg + LIRA 1.2 mg, CANA 100 mg, and LIRA 1.2 mg. 
CI: confidence interval; SE: standard error; BW: body weight; SBP: systolic blood pressure; CANA: canagliflozin; LIRA: liraglutide; N/D: no data.

Table 5.  The Effectiveness of Empagliflozin in Reducing HbA1c, Body Weight and SBP

Publication HbA1c 
change

95% CI 
or SE

BW change 
(kg)

95% CI 
or SE

SBP change 
(mm Hg)

95% CI 
or SE

No. of 
subjects Notes

de Boer et al, 
2020 [102]

-0.44% 1.18 -2.25 1.89 kg -6.98 15.03 mm Hg 125 After 12 weeks of treatment 
with 25 mg dose, empagliflozin 
was inferior to licogliflozin

Gupta et al, 
2021 [103]

-1.10% 0.64 -2.64 1.97 kg -7.68 5.2 347 After 12 weeks from 
baseline, empagliflozin 25 
mg + linagliptin 5 mg

Inzucchi et al, 
2021 [104]

-0.73%a 0.14a -2.11a 0.46a -6.3c -8.4 to -4.2c 637 Empagliflozin 10 mga vs. 25 
mgb vs. placebo after 24 weeks, 
SBP at baseline > 140 mm 
Hgc and 130 - 140 mm Hgd

-0.97%b 0.15b -2.93b 0.47b -4.0d -5.9 to -2.1d

Liu et al, 
2021 [105]

-1.01% 0.16 -1.5 0.4 -5.0 1.6 106 Empagliflozin was superior to 
linagliptin after 24 weeks from 
baseline (25 mg vs. 5 mg)

Althobaiti et 
al, 2022 [106]

-0.93% -1.54% to 
-0.32%

-0.874 -4.36 to 
-6.10

-3.85 -6.81 to -0.88 256

Khan et al, 
2022 [107]

-0.97% 0.68 -1.15 2.56 -13.14 13.29 120

Significant reductions in each of these parameters were achieved in every study presented. a, bChanges in parameters respectively for 10 mg and 
25 mg empagliflozin groups. c, dChanges in SBP after 24 weeks, respectively for groups with initial SBP > 140 mm Hg and 130 - 140 mm Hg. CI: 
confidence interval; SE: standard error; BW: body weight; SBP: systolic blood pressure.
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The DAPA-CKD trial involved 2,152 participants and its 
primary outcome was defined as a sustained decline in glomer-
ular filtration rate (GFR) by at least 50%, end-stage renal dis-
ease, or death from renal or cardiovascular causes. The results 
showed a significant risk reduction by 44% (HR: 0.56; 95% 
CI: 0.45 to 0.68; P < 0.001). The study also revealed reduced 
risk of death from cardiovascular causes or hospitalization for 
heart failure (HR: 0.71; 95% CI: 0.55 to 0.92; P = 0.009) [111]. 
Furthermore, other studies also support the effectiveness of 
dapagliflozin in reducing HbA1c levels, body weight, and sys-
tolic blood pressure (Table 6) [63, 112-116].

Conclusions

All the studies presented in this review demonstrate the high 
efficacy of SGLT2 inhibitors in decreasing not only HbA1c, 
but also body weight and systolic blood pressure. These SGLT 
2 inhibitors have beneficial effects on reducing cardiovascu-
lar risk and progression of chronic kidney disease. This out-
come is not limited to relieving glucotoxicity on the vascular 
endothelium by reducing glycemia. Flozins also prevent glo-
merular hyperfiltration and damage, thus exerting their ne-
phroprotective effect. Indirect inhibition of the renin-angioten-
sin-aldosterone system explains the cardioprotective activity 
of this group of drugs.

The most common adverse effect of SGLT2 inhibitors is 
an increased risk of urogenital infections due to glucosuria and 
osmotic diuresis. Euglycemic ketoacidosis or acute kidney in-
jury are much less common and have only been reported in 
a few cases, such as with remogliflozin. However, numerous 

publications have demonstrated the safety of SGLT2 inhibi-
tors.

Type 2 diabetes is often associated with weight gain and 
hypertension, therefore SGLT2 inhibitors should be one of the 
first-line agents in the treatment of this disease, especially in 
patients with comorbidities such as heart failure or kidney dis-
ease.
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Table 6.  The Effectiveness of Dapagliflozin in Reducing HbA1c, Body Weight, and Systolic Blood Pressure

Publication HbA1c 
change

95% CI 
or SE

BW change 
(kg)

95% CI 
or SE

SBP change 
(mm Hg)

95% CI 
or SE

No. of 
subjects Notes

McGurnaghan et 
al, 2019 [112]

-1.39% -1.45% to 
-1.32%

-2.20 -2.34 to 
-2.06 kg

-4.32 -4.84 to -3.79 
mm Hg

8,566

Wilding et al, 
2019 [113]

-1.54%a -1.65% to 
-1.44%a

-3.31%a -4.37% to 
-2.25%a

2.5a -3.89 to -1.11a 3,774 Early usersa vs. 
late usersb

-1.02%b -1.08% to 
-0.97%b

-4.06%b -5.05% to 
-3.07%b

2.84b -3.67 to -2.01b

Chen et al, 
2020 [114]

-0.73% -0.8% to 
-0.67%

-1.61 -1.79 to 
-1.42

-3.6 N/D 1,960

Frias et al, 
2020 [115]

-1.35% 0.07 -3.1 0.3 -2.6 0.9 444 Dapagliflozin 
plus saxagliptin

Han et al, 
2023 [63]

-0.75% 0.06 -3.58 0.34 -6.57 1.04 200

Sethi et al, 
2023 [116]

-1.1%c 1.44c -1.4c 3.31c -4.5c, d 14.9c 3,616 Dapagliflozin as 
an add-on therapy.

-1.6%d 1.41d -1.5d 3.22d 15.1d Subgroup HbA1c > 
7.5%c and > 8%d

The change in HbA1c ranged from -0.73% to -1.6%, while body weight decreased by -1.4 kg to -3.58 kg depending on the study group. Additionally, 
reductions in systolic blood pressure were observed in dapagliflozin-treated patients in all presented publications. aEarly users group. bLate users 
group. cSubgroup with HbA1c at baseline > 7.5%. dSubgroup with HbA1c at baseline > 8%. CI: confidence interval; SE: standard error; BW: body 
weight; SBP: systolic blood pressure; n/d: no data.
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